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Abstract. We consider a model of two (fully) compact polymer chains, coupled through an attractive
interaction. These compact chains are represented by Hamiltonian paths (HP), and the coupling favors the
existence of common bonds between the chains. We use a (n = 0 component) spin representation for these
paths, and we evaluate the resulting partition function within a homogeneous saddle point approximation.
For strong coupling (i.e. at low temperature), one finds a phase transition towards a “frozen” phase where
one chain is completely adsorbed onto the other. By performing a Legendre transform, we obtain the
probability distribution of overlaps. The fraction of common bonds between two HP, i.e. their overlap q,
has both lower (qm) and upper (qM) bounds. This means in particular that two HP with overlap greater
than qM coincide. These results may be of interest in (bio)polymers and in optimization problems.

PACS. 61.41.+e Polymers, elastomers, and plastics – 64.70.Pf Glass transitions

1 Introduction

The study of two coupled identical systems is a familiar
topic in Statistical Physics, both in equilibrium [1] and
non equilibrium contexts [2]. It is commonly considered
in the physics of glassy systems [3,4], where it is a substi-
tute to the time honored conjugate field in the exploration
of phase space. In this note, we wish to extend these stud-
ies to the case of two compact polymer chains. The cou-
pling between the chains is chosen as an attractive term
which favors the existence of common monomers (bonds);
in other words, we consider the “adsorption” of a chain
onto the other. By a Legendre transform, this model maps
onto the overlap probability distribution of the chains.

For simplicity, we will consider fully compact chains.
This allows us to use a simple spin representation [5] to
describe the chain properties through Hamiltonian paths.
Beside its interest in homopolymer physics, this model
may yield some insight in the sequence-structure relation-
ship in proteins, or in some related optimization problems
such as the traveling salesman. The outline of the paper
is as follows: we briefly recall in Section 2 the connection
between a single polymer chain and an n-component spin
system, in the limit n = 0. The extension to the problem
of two interacting chains (Sect. 3) is then straightforward,
and will be solved at a mean field level in Section 4. We
finally mention some possible consequences of the model.
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2 The single chain problem

The connection between polymer physics and spin systems
may be presented as follows [6]. Let us consider, on each
site r of a d-dimensional cubic lattice, a spin variable Sr,
with n components. The normalization is such that S2

r =
n. Consider the sum:

Z(K) =
∫ ∏

r

dµ(Sr)
∏
{r,r′}

(1 +KSrSr′) (1)

where the variable K denotes the fugacity of a monomer,
and the product runs over neighboring pairs of sites (i.e.
bonds) of the lattice. In equation (1), dµ is the normalized
integration measure on the (n− 1) dimensional sphere of
radius

√
n.

Due to the normalization of Sr, it is easy to see that∫
dµ(Sr) exp(HrSr) = 1 +

H2
r

2
+O(n) (2)

so that, by taking derivative with respect to Hα
r (α =

1, ..., n), we obtain:∫
dµ(Sr) 1 = 1;

∫
dµ(Sr) (Sαr )2 = 1.

All higher powers of Sr are at least of order n.
Expanding equation (1) in powers of K, and using the

previous remark, we see that Z(K) can be viewed as a
sum over all closed loops, each closed loop of length l con-
tributing a weight nKl. In the limit n→ 0, only the single
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connected loops survive, hence the possibility to represent
self-avoiding walks (SAW) on the lattice by equation (1).
A very useful rewriting of equation (1) is

Z(K) =
∫ ∏

r

dµ(Sr)e
1
2

P
(r,r) KSr∆rr′Sr′ (3)

where the operator ∆rr′ is a lattice ∆ function (∆rr′ = 1,
if r and r′ are neighboring sites, and 0 otherwise). Note
that the sum in the exponential term of equation (3)
is over the sites of the lattice. Applying the familiar
Stratonovich-Hubbard transformation to equation (3), we
introduce n = 0 component fields φr and get

Z(K) =
∫ ∏

r

dφre
− 1

2
P

(r,r′) φr∆
−1
rr′φr′

×
∫ ∏

r

dµ(Sr)e
√
K
P

r Srφr . (4)

Using equation (2), we get

Z(K) =
∫ ∏

r

dφre
− 1

2

P
(r,r′) φr∆

−1
rr′φr′

×
∏
r

(
1 +

K

2
φr

2

)
. (5)

So far we have not specified the spatial extension of the
SAW: Z(K) is the grand partition function of the chain, so
that the number M of sites of the lattice is not related to
the number N of bonds of the SAW. We now require that
fully compact configurations are the only configurations
present in equation (5), i.e. M = N . This full compact-
ness requirement amounts to keep the term proportional
to nKN in equation (5). The coefficient of this term is
simply the number N of self avoiding fully compact con-
figurations (also called Hamiltonian paths or HP), that
is

N = K−N
(
Z(K)
n

)
n=0
K=∞

=

limn→0
1
n

∫ ∏
r

dφre
− 1

2

P
(r,r′) φr∆

−1
rr ′φr′

∏
r

(
φr

2

2

)
. (6)

Note that N is simply the canonical partition function for
a HP of N bonds. Performing a homogeneous saddle point
approximation on φ in equation (6) yields [7]

N =
(z
e

)N
(7)

where z = 2d is the coordination number of the lattice.
Note that in the context of Hamiltonian paths, an ho-
mogeneous solution implies that one deals with periodic
boundary conditions [8].

Equation (6) holds for an arbitrarily connected graph
with adjacency matrix ∆rr′ , but the saddle point evalua-
tion is a priori valid only for large enough z. Indeed, for

the fully connected graph (z = N), the number of HP can
be directly estimated (N = N !/(2N)), and equation (7)
reduces to the Stirling formula. These results can also be
obtained through the application of the Bethe approxima-
tion to polymers [9].

3 The coupled chains problem

We now extend the above approach to the case of two in-
teracting self avoiding chains. By “interacting chains”, we
mean that the presence of common (or doubly occupied)
bonds between the chains is thermodynamically favored,
and we are interested in counting the number of configu-
rations of two such HP.

Following equation (1), we denote by K the fugacity
of a monomer and consider the sum

Z2(K,λ) =
∫ ∏

r

dµ(Sr)dµ(σr)

×
∏
{r,r′}

(
1 +K(SrSr′ + σrσr′) + λK2(SrSr′)(σrσr′)

)
(8)

where σr has the same properties as Sr (σ2
r = n), and the

parameter λ is a measure of the interaction between the
chains (see below). The contribution of doubly occupied
bonds to equation (8) is proportional to λN12 , where N12

is the number of these bonds (implying λ > 1).
Following exactly the same steps as in Section 2, we

have

Z2(K,λ) =
∫ ∏

r

dµ(Sr)dµ(σr)e
1
2

P
(r,r′)∆rr′G2(S,σ) (9)

with

G2(S,σ)=K(SrSr′+σrσr′)+(λ− 1)K2(SrSr′)(σrσr′).
(10)

Performing the Stratonovitch-Hubbard transformation on
equations (9, 10) yields

Z2(K,λ) =∫ ∏
r

dφrdψr
∏
αβ

dqαβ(r)e−
1
2
P

(r,r′) ∆
−1
rr′Arr′

×
∫ ∏

r

dµ(Sr)dµ(σr) e
√
K
P

r Br (11)

with

Arr′ = φrφr′ +ψrψr′ +
∑
αβ

qαβ(r)qαβ(r′) (12)

and

Br = Srφr + σrψr +
√
K
√
λ− 1

∑
αβ

qαβ(r)Sαr σ
β
r . (13)
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Note that the previous transformations require two n com-
ponent fields φr and ψr, and an n×n matrix qαβ(r), with
n = 0. One may now perform the integration over the orig-
inal spin variables Sr and σr in equation (11). We obtain

Z2(K,λ) =
∫ ∏

r

dφrdψr

×
∏
αβ

dqαβ(r) e−
1
2
P

(r,r′)∆
−1
rr′Arr′

∏
r

Cr (14)

where

Cr = 1 +
K

2
(φr2 +ψr2) +

K2

4
φr

2ψr
2

+K2
√
λ− 1

∑
αβ

φαr qαβ(r)ψβr

+
K2

2
(λ− 1)

∑
αβ

q2
αβ(r). (15)

So far, we have not specified the spatial extension of the
chains. The sum Z2(K,λ) is grand canonical with respect
to both singly and doubly occupied bonds. Following the
previous section, we now enforce the full compactness con-
straint for both chains, by keeping the term proportional
to n2K2N in equation (14). Defining by Z(λ), the total
number of HP of the two interacting chains, we have

Z(λ) = K−2N

(
Z2(K,λ)

n2

)
n=0
K=∞

. (16)

Technically, the extraction of the term proportional to
K2N in Z2(K,λ), amounts to keep on each site r the terms
proportional to K2 in equations (14, 15). We may there-
fore write

Z(λ) = limn→0
1
n2

∫ ∏
r

dφrdψr

×
∏
αβ

dqαβ(r)e−
1
2

P
(r,r′)∆

−1
rr′Arr′

∏
r

Dr (17)

where Arr′ is given in equation (12) and

Dr =
φr

2ψr
2

4
+
√
λ− 1

∑
αβ

φαr qαβ(r)ψβr

+
1
2

(λ− 1)
∑
αβ

q2
αβ(r). (18)

Note that Z(λ) is still grand canonical with respect to the
number N12 of common bonds between the two HP, since,
as mentioned above, the term with N12 common bonds in
Z(λ) yields a contribution proportional to λN12 .

One may also interpret equation (16) as giving the par-
tition function of two HP of N bonds, with an attractive
interaction energy ε favoring common bonds, at tempera-
ture T , that is

Z(ε) =
∑

(HP1,HP2)

eβεN12 (19)

with β = 1
T . The identity between equations (16, 19), i.e.

between Z(λ) and Z(ε), yields the familiar result λ = eβε.
Moreover, equation (19) allows us to derive bounds for the
partition function Z(ε) (or Z(λ)), namely

N eβεN ≤ Z(ε) ≤ N 2 (20)

where N is given in equation (7). From now on, we will
set ε = 1.

4 Saddle point approximation and phase
transitions

Since an exact evaluation of equations (17, 18) seems to be
out of reach, we will use a saddle point approximation with
respect to the variables φr, ψr, and qαβ(r). This saddle
point will be further restricted to be space independent
(φr = φ,ψr = ψ, qαβ(r) = qαβ), again implying periodic
boundary conditions. Setting Z(λ) = e−Nω(λ), we get

ω(λ) =

Min(φα,ψβ ,qαβ)

 1
4d

(φ2 +ψ2 +
∑
αβ

q2
αβ)− LogD

 (21)

where

D =
φ2ψ2

4
+
√
λ− 1

∑
αβ

φαqαβψ
β

+
1
2

(λ− 1)
∑
αβ

q2
αβ . (22)

The saddle point equations are easily solved, by introduc-
ing the quantities Φ = φ2, Ψ = ψ2,R =

∑
αβ φ

αqαβψ
β ,

and Q =
∑
αβ q

2
αβ . Denoting the saddle point values with

a subscript 0, we obtain

Φ0

2d
=

1
2Φ

2
0 +
√
λ− 1R0

D0
(23)

R0

2d
=

(λ− 1)R0 +
√
λ− 1Φ2

0

D0
(24)

Q0

2d
=

(λ− 1)Q0 +
√
λ− 1R0

D0
(25)

together with Φ0 = Ψ0. In equations (23–25), the denom-
inator is given by

D0 =
Φ2

0

4
+
√
λ− 1R0 +

(λ− 1)
2

Q0. (26)

One then gets

ω0(λ) =
Φ0

2d
+

Q0

4d
− LogD0. (27)

At this point, one has to resort to a numerical solution
of the saddle point equations. Note that the possible so-
lutions obey simple equalities or inequalities, such as:
Φ0,Q0 > 0, Φ0 + Q0 = 4d, R2

0 = Q0Φ
2
0.
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Fig. 1. The free energy f as a function of temperature. The
saddle point result f0 (full line) crosses the free energy g of the
fully adsorbed phase (hatched line) at point A (T = T3 ∼ 0.58).
Branch AB is metastable (see text).

Our results can be interpreted in two ways. They first
describe the (thermal) properties of two HP coupled via
equation (19): LogZ(λ) = −Nω(λ) is then, up to a tem-
perature factor, the free energy (with λ = eβ). On the
other hand, a Legendre transformation with respect to
Logλ, gives information on the number N12 of common
bonds between the HP, i.e. on their overlap properties.
For convenience, we define N12 = Nq, and

Θ(q) =
∮

dλ
2iπλ

Z(λ)λ−Nq . (28)

A saddle point evaluation of equation (28) gives

q = − ∂ω(λ)
∂Logλ

· (29)

Using equations (23–27), we obtain

q0 =
λ

λ− 1
Q0

4d
· (30)

We now present our results along both ways.

4.1 Thermal properties of the coupled Hamiltonian
paths

Unless otherwise specified, our results are given for d = 3,
and the main parameter of this section is the temperature
T (T = 1

Logλ). The saddle point equations (23–27) yield

the free energy f0(T ) = Tω0(e
1
T ) as a function of T (see

Fig. 1).
Solving numerically the above equations, we get the

following results

1) T1 =∞
In this case, we find a finite fraction of common bonds

q
(1)
0 = 1

d = 1
3 . This value corresponds to a random choice

of a common bond among the d = 3 lattice dimensions,
and is the smallest possible value qm of the overlap.

2) T2 = 1
Log(d+1) ' 0.7213

One then has Φ0 = Q0 = 2d = 6. This point is in
some sense a disorder point [10] where the values of Φ0

(linked to the entropy of a single HP) and Q0 (linked to
the overlap of the two HP) cross. It corresponds to an
overlap q(2)

0 = d+1
2d = 2

3 .

3) T3 ' 0.5846: the complete adsorption transition.
At this point, the two HP system “freezes” into a single

HP: one may also say that one chain gets fully adsorbed
onto the other. This total adsorption is due to the strong
topological constraints imposed by the chain connectivity
and the full compactness of the HP. As a result, it is im-
possible for two chains to have a large overlap and differ
only by small “bubbles” while filling up the whole space.

Of course, the entropy does not vanish below T3, but
becomes equal to the entropy of a single HP, see equa-
tion (7). Note that this solution is not a saddle point so-
lution. It must nevertheless be taken into account, since
its free energy per monomer which reads

g(T ) = −1− T Log
(z
e

)
(31)

is an upper bound (see Eq. (20)). The transition temper-
ature T3 is thus defined by g(T3) = f0(T3) (see point A of
Fig. 1). The mechanism of this first order freezing transi-
tion is analogous to the one studied in reference [11], in
the context of polymer crystallization. Note that q jumps
from q

(3)
0 ' 0.7572 to q = 1 across the transition. From a

thermodynamic point of view, we have thus found that
the overlap fraction of two HP has a maximum value
qM ' 0.7572, beyond which the two HP coincide. The
intuitive image of two HP differing by finite independent
“bubbles” does not hold, due to the topological frustra-
tion.

Note that, as the space dimension d increases, the
adsorption temperature T3 decreases. In particular, the
transition does not occur for the fully connected graph
(d→∞).

4) In the present mean field description, one may con-
tinue the high temperature branch of the free energy
f0(T ) beyond the full adsorption point. This continua-
tion implies the existence of a metastable state. As in
reference [11], a particular temperature T4 may be de-
fined, where the entropy s0(T ) = −∂f0(T )

∂T equals that of a
single HP

s0(T4) = Log
(z
e

)
(32)

leading to T4 ' 0.4350, and in turn to q(4)
0 ' 0.9627. From

a physical point of view, one can argue that the entropy
of the two coupled HP system is bounded by the entropy
of a single HP: temperature T4 (i.e. point B of Fig. 1) can
then be identified to a limit of metastability. We do not
have a clear understanding of the metastable branch (note
in particular that q(4)

0 6= 1), and more work is needed on
this point.
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4.2 Overlaps and Legendre transform

As previously mentioned, our results can also be inter-
preted in terms of the overlap properties of the two HP.
A convenient function to characterize these properties is
the overlap probability distribution P(q) defined as

P(q) =
1
N 2

∑
(HP1,HP2)

δ(N12 −Nq) (33)

where N is given in equation (7) and N12 is the number of
common bonds of the HP. Equations (28, 33) imply that

P(q) =
1
N 2

Θ(q). (34)

From a strictly thermodynamic point of view, we have
the result that the overlap probability distribution P(q) is
defined only for qm < q < qM, and for q = 1. The existence
of a metastable branch beyond qM is not easy to interpret:
the saddle point evaluation (29) of the Legendre transform
(28) then becomes ill-defined, since λ(q) becomes a multi-
valued function.

For qm < q < qM, the relation between λ (i.e. tem-
perature) and q (i.e. overlap) can be inverted through
equation (29). There is thus a one to one correspon-
dence between overlap and temperature in the region
1 < λ < λ3 = e

1
T3 ' 5.532. The thermal properties of

the coupled system imply that, for 1 < λ < λ3, we have
P(q) = δ(q0 − q), where q0 is given by equation (30). On
the other hand, for λ > λ3, we have P(q) = δ(1− q).

Another quantity of interest is the entropy, considered
as a function of the overlap q. It is given by

s(q) =
1
N

LogΘ(q). (35)

Performing the saddle point evaluation on λ in equa-
tion (28), we get

s0(q) = −ω0(λ)− qLogλ (36)

where λ = λ(q) is given by equation (30). The phase tran-
sition for q = qM can be interpreted (see Fig. 2) as a
Maxwell construction since the results of the previous sec-
tion can be rewritten as

s0(qM)− s0(1) = (1− qM) Logλ3. (37)

Beyond the homogeneous saddle point approximation, our
results in the region qM < q < 1 are coherent with a
phase coexistence picture between a fraction x of the phase
q = qM and a fraction 1 − x of the fully adsorbed phase
q = 1. Such a phase coexistence will give rise to an effec-
tive overlap qM < qeff = xqM + (1 − x) < 1. Note that
this picture is different from that of finite bubbles men-
tioned in Section 4.1: here, the phase coexistence involves
macroscopic domains of overlap 1 and qM.

0.20 0.40 0.60 0.80 1.00
q

0.60

0.80

1.00

1.20

1.40

1.60

s

B C

A*

* *

Fig. 2. The entropy s(q) as a function of the overlap q. The full
line denotes the saddle point result s0(q); the hatched line is
the result of the Maxwell construction with the fully adsorbed
state. Note that AB corresponds to the metastable branch of
Figure 1.

5 Conclusion

We have considered the overlap and/or thermal proper-
ties of two coupled Hamiltonian paths (HP), in a homo-
geneous saddle point approximation. We have found (for
d = 3) a discontinuous phase transition at finite coupling,
between an entropy dominated phase and a completely ad-
sorbed phase. At the transition, the overlap between the
HP jumps from qM ' 0.7572 to q = 1. Our results may be
relevant in a proteic context (NMR, structure alignment).
If the number of constraints exceeds a certain threshold,
the existence of qM suggests that a single spatial struc-
ture may survive. For longer polymers, the existence of a
first order transition, raises many questions (metastabil-
ity, glass transition...).

The influence of the fluctuations on these results is
difficult to assess, and we appeal to a related problem. In
reference [11], we have studied the crystallization transi-
tion of a semi-flexible HP using (i) a homogeneous saddle
point (ii) a low temperature expansion. Approximation (i)
yields a first order transition between a liquid phase and a
frozen solid (with zero entropy per monomer), quite rem-
iniscent of the full adsorption transition that we find here
for T = T3. On the other hand, approximation (ii) leads to
an almost frozen solid (with an exponentially small, albeit
finite, entropy per monomer). The critical temperature is
also slightly changed, but the liquid-solid transition re-
mains discontinuous. A naive transposition of the results
of (ii) to the present model would give a first order transi-
tion (i.e. with a jump in the overlap q) towards a non fully
adsorbed low temperature phase (q exponentially close to
1). This point is currently under study.

Finally, we remark that the coupled chains system of
this paper undergoes a phase transition at a finite value of
the coupling constant λ, whereas in spin glasses, the two
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replica system undergoes a (spin glass) transition when
the coupling constant vanishes [3,4].

S. Franz thanks the Service de Physique Théorique, Saclay, for
its kind hospitality during the elaboration of this work.
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